Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs.

نویسندگان

  • Daniel L Cohen
  • Winifred Lo
  • Andrew Tsavaris
  • David Peng
  • Hod Lipson
  • Lawrence J Bonassar
چکیده

As the tissue engineering and drug delivery communities place greater emphasis on producing constructs of prescribed geometry and organization, three-dimensional printing is becoming as an increasingly important technique. While numerous tissue printing techniques have emerged, little has been done to characterize the properties of printing inks and the resultant effects on geometric fidelity, cell viability, and mechanical integrity. These questions have been neglected largely because of the lack of methods to characterize the real-time properties of printing inks. We present a novel technique for characterizing the homogeneity of hydrogel tissue printing inks that measures loads during ink deposition and its temporal variation, called, mechanical noise. We then used this technique to determine the effects of increased mixing on the homogeneity of alginate hydrogels and determined whether this results in improved geometric fidelity of printed constructs. We also studied potential adverse effects on cell viability and mechanical integrity of printed parts. Increased mixing between alginate and crosslinker to 128 cycles yielded an 82% reduction in mechanical noise. Geometric fidelity also improved with this increased mixing, in terms of a smoother surface texture, better matching of the target geometry, and fewer point defects. Viability was not adversely affected by increased mixing, and it actually improved by 34% with a 45 min curing time. As mixing before printing was increased from 8 to 200 cycles, the modulus also increased by 110% from 4.0  ±  0.1 to 8.4  ±  1.0 kPa. The results presented herein motivate a radical shift in alginate printing protocol, and also propose a useful methodology for characterizing three-dimensional printing materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells

Objective(s): Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim...

متن کامل

Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cel...

متن کامل

Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting.

A rapidly formed supramolecular polypeptide-DNA hydrogel was prepared and used for in situ multilayer three-dimensional bioprinting for the first time. By alternative deposition of two complementary bio-inks, designed structures can be printed. Based on their healing properties and high mechanical strengths, the printed structures are geometrically uniform without boundaries and can keep their ...

متن کامل

An optical method for evaluation of geometric fidelity for anatomically shaped tissue-engineered constructs.

Quantification of shape fidelity of complex geometries for tissue-engineered constructs has not been thoroughly investigated. The objective of this study was to quantitatively describe geometric fidelities of various approaches to the fabrication of anatomically shaped meniscal constructs. Ovine menisci (n = 4) were imaged using magnetic resonance imaging (MRI) and microcomputed tomography (mic...

متن کامل

Biofabrication Under Fluorocarbon: A Novel Freeform Fabrication Technique to Generate High Aspect Ratio Tissue-Engineered Constructs

Bioprinting is a recent development in tissue engineering, which applies rapid prototyping techniques to generate complex living tissues. Typically, cell-containing hydrogels are dispensed layer-by-layer according to a computer-generated three-dimensional model. The lack of mechanical stability of printed hydrogels hinders the fabrication of high aspect ratio constructs. Here we present submerg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part C, Methods

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2011